
Vilber School
Re-development
Project: Sharon, MA
Tatie Resnick
Cott Horsley
Horsley Witten Group

LID....or....PID?

- Each new development minimized impacts
 = slow deterioration
- Each new development caused no new net impacts
 = no improvement/status quo
- Each new development produced a positive impact = restoration

Existing Conditions

Goals & Objectives of the Project

- Provide "Smart Growth" Redevelopment
- Increase recharge/base flow to Beaver Brook
- Reduce nitrogen loading in Zone II
 Area
- Minimize public supply well water demands

Wastewater Flow Estimation

	Design Flow	Act	ual Flow
	(GPD)		(GPD)
Library (New construction)	1,501	751	
Retail (1st floor – Wilber School)	700	350	
Office (2 nd floor – Wilber School) 1,050	525	
Residential (3 rd floor – Wilber So	chool) 2,530		1,265
Subtotal Onsite Flow	5,781		2,891
Additional Allowable Offsite Flo	w 4,219	2,100	

Total Onsite and Offsite Flow 9,981 4,991

Applying Water Savings to Actual Flow

ppryms vvacc	i ouville		
$\underline{\nabla}$	Vater Demand	W	ater Demand
	<u>Before</u>	<u>Water</u>	<u>After</u>
	Conservation	<u>Savings</u>	Conservation
	(GPD)	(GPD)	
Library	751	33.3%	500
Retail	350	33.3%	233
Office	525	33.3%	350
Residential	1,265	18.1%	1,036
Onsite Water Demand	2,891		2,120
Additional Offsite			
Water Demand	2,100		2,100

Total Water Demand 4,991 4,220

Total Water Savings = 771 GPD / 15%

Estimating Dequired and Surplus Doof

I)	stimating Required and Surpius	Kooi
R	unoff	<u>GPD</u>
	Rooftop Runoff Produced Onsite	3,388
	Rooftop Runoff Required	
	For Toilet Flushing	771
	For Irrigation	2,049
	Surplus Rooftop Runoff	568

Water Conservation

*Stormwater re-use for toilet flushing and irrigation.

Conventional water demand: 7,050 GPD

Alternative source (stormwater): 2,820 GPD

Resulting well demand: 4,220 GPD

Hydrologic Budget: Existing Conditions

Total Area 3.7 Acres

Impervious Area 1.6 Acres

(Former Wilber School and Parking lot)

Pervious Area 2.1 Acres

Recharge Rate (Impervious) 0 in./yr.

Recharge Rate (Pervious) 18 in./yr.

Total Recharge 2,819 gpd

Hydrologic Budget: Proposed Project

Net Recharge from Rooftop Runoff (After Reuse)	568 GPD
Parking Lot Runoff (After Bioretention)	768 GPD
Net Recharge of Pervious Areas	2,277 GPD
Onsite Infiltration of Treated Sewage (After wastewater treatment and ET)	3,991 GPD
Subtotal Recharge	7,604 GPD
Water Withdrawals (GP #4)	3,630 GPD
Total Net Recharge	3,974 GPD

Net Increase in Groundwater Recharge

 Direct benefit: Increased base flow to Beaver Brook

Total Recharge

Existing conditions: 2,819 gal./day

Future conditions: 3,974 gal./day

Net Increase = 1,155 gal./day or 41%

Reduction to Nitrogen Load: Wastewater Treatment

Existing Conditions

O	
	Flow
	$\overline{(GPD)}$

Nitrogen Conc.	Nitroge
In Wastewater	Load
$\overline{\text{(mg/L)}}$	(lbs./yr.)
	7

Reduction to Nitrogen Load: Wastewater Treatment

Future Conditions

		Nitrogen Conc	. <u>Nitrogen</u>
	<u>Flow</u>	in Wastewater	Load
	(GPD)	(mg/L)	<u>(lbs./yr.)</u>
Wilber School	2,891	10	88
Neighborhood Apts/	2,100	10	64
Homes			
Total	4,991		152

Percent Reduction = 72 lbs./yr. or 32%

Summary of Project

- Mixed use, "Smart Growth" re-development
- Net increase of 1,155 gal./day to Beaver Brook
- Net decrease of 72 lbs./yr. nitrogen load to public water supply well
- Net reduction of 40% in demand on public water supply well
- Public education/demonstration of integrated water management and innovative wastewater design (constructed wetland)

